Parallel to the impressive success of deep learning in real-world applications ranging from autonomous driving to gaming intelligence and healthcare, deep learning-based methods are now also making a strong impact in science, replacing or complementing state-of-the-art classical model-based methods in solving mathematical problems such as inverse problems or partial differential equations.
However, despite the outstanding successes, most of the research on deep neural networks is empirically driven and their theoretical-mathematical foundations are largely lacking. The main goal of this priority program is to develop a comprehensive theoretical foundation of deep learning.
The statistical perspective, which views neural network training as a statistical learning problem and investigates expressivity, learning, optimization, and generalization,
The application perspective, which focuses on security, robustness, interpretability, and fairness
The mathematical-methodological perspective, which develops and theoretically analyzes novel Deep Learning-based approaches to solving inverse problems and partial differential equations.
The research questions to be addressed in this priority program are to a large extent interdisciplinary in nature and can only be solved by a joint effort of mathematics and computer science.
Mathematical methods and concepts from all areas of mathematics are required, including algebraic geometry, analysis, stochastics, approximation theory, differential geometry, discrete mathematics, functional analysis, optimal control, optimization, and topology.
Statistics and theoretical computer science also play a fundamental role. In this sense, methods from mathematics, statistics and computer science form the core of this priority program.
Congratulations to Dr. Adrian Riekert on winning the 'Theoretical Foundations of Deep Learning Best Thesis Award' in 2024. We wish him continued success in his academic journey and thank our international prize committee.
The SPP 2298 will host a workshop with the title "Understanding Generalization in Deep Learning" from February 19-21, 2025 at the TUM Science & Study Center in Raitenhaslach. For more information and registration click the link bellow
Applications for the FoDL Best Thesis Award 2024 are now open. For more information, please click the link down below.
Find the latest news and upcoming events from the various groups researching artificial intelligence and its applications at LMU Munich.